SYNTHESIS OF 1,3- AND OF 1,5-BENZOXAZOCINE DERIVATIVES

R. K. Razdan, H. G. Pars, B. A. Zitko, V. V. Kane, and W. R. Thompson Arthur D. Little, Inc., Cambridge, Massachusetts 02140

(Received in USA 22 January 1973; received in UK for publication 26 March 1973)

We wish to report the synthesis of 2,5-dimethyl-3,4,5,6-tetrahydro-2,6-methano-2<u>H</u>-1,5benzoxazocine-7-ol <u>1</u> and of 2,3-dimethyl-3,4,5,6-tetrahydro-2,6-methano-2<u>H</u>-1,3-benzoxazocine 2, which represent two new heterocyclic ring systems. We were prompted to synthesize benzoxazocine derivatives because of their relationship to benzomorphans <u>3</u>,¹ a series of potent analgesics[†] which includes phenazocine² and pentazocine³

The synthesis of 1 was accomplished as shown in Scheme I. A solution of 4 was smoothly transformed into its lithio salt at -5 to -10° with <u>n</u>-butyl lithium. This was stirred at room temperature for 18 hr with 1,4-dimethylpyridinium iodide 5 in ether. Isolation produced in high yields crude 1,2-dihydropyridine derivative 6, which was reduced with sodium borohydride⁴ in methanol containing 2N sodium hydroxide to a mixture of tetrahydropyridines 7 and 8.⁵ Fusion of this mixture with methylmagnesium iodide⁶ at 150° for 2 hr gave the demethylated products 9 and 10. Treatment of the phenolic mixture with concentrated hydrochloric acid gave 1 (22% overall yield from 4) as a liquid (after elution on silica gel with methanol), which was homogeneous on tlc and glc; nmr (CDCl₃) δ 1·30(3H, s, 0-C-CH₃), 1·5-2·85(6H, m, methylene protons), 2·36(3H, s, N-CH₃), 4·4(1H, m, benzylic proton), 6·35(2H, d, aromatic 2H), 7·02(1H, m, aromatic H); mass spectrum <u>m/e</u> 219(M⁺), 204(M⁺-15), 176(M⁺-43), 161(base peak); ultraviolet absorption λ_{max}^{EtOH} 280 mµ, (ϵ 2000). The data clearly support structure 1. During

[†] Compound 1 was active at 20 mg/kg/sc in mice in the tail flick test.

the acid catalyzed cyclization no product derived from the secondary carbonium ion was detected.

Scheme I

The synthesis of the 1,3-benzoxazocine derivative 2 is shown in Scheme II. The acid $11a^7$ on treatment with benzyl bromide and potassium carbonate in refluxing acetone gave 11b in 90% yield. Reaction of 11b in refluxing benzene with ethylene glycol and p-toluenesulfonic acid gave the ketal 12a, which on treatment with methylamine in ethylene glycol⁸ gave the amide 12b, mp 98-99° (53%). Reduction of 12b with lithium aluminum hydride in ether afforded the amine 13 (75%). On heating 13 with a mixture of concentrated hydrochloric acid and acetic acid (1:2) at 85° for 6 hr, the benzoxazocine 2 was formed and purified (80% yield) by preparative tlc (silica gel G 5% methanol/chloroform); nmr (CDCl₃) δ 1.51 (3H, s, 0-C-CH₃), 2.0 (4H, m, 4 methylene protons), 2.35 (2H, m, N-CH₂), 2.43 (3H, s, N-CH₃), 3.04 (1H, m, benzylic proton), 6.87 (4H, m, aromatic); mass spectrum m/e 203 (M⁺), 188 (M⁺-CH₃). One possible mechanism for the conversion of 13 to 2 is outlined in Scheme II.

Scheme II

2

It is interesting to note that the treatment of the lactam $\underline{12}^{7,9}$ with a wide variety of reducing agents, including lithium aluminum hydride, aluminum hydride,¹⁰ and diborane¹¹ only gave the ring cleavage product $\underline{18}$;¹² nmr(DMSO) δ 1.05 (3H, d, J = 6Hz, C-CH₃), 2.24 (3H, s, N-CH₃), 1.5-3.0 (8H, m), 6.9 (4H, m, aromatic); ir (CHCl₃) 3600 cm⁻¹ (OH). We attribute this to the complexing of the metal to the pyranyl oxygen thereby weakening the C-O bond.

<u>Acknowledgment.</u> We are grateful to Beecham Research Laboratories, Surrey, England, for financial support of this work.

REFERENCES

- K. Kanematsu, R. T. Parfitt, A. E. Jacobson, J. H. Ager, and E. L. May, <u>J. Amer. Chem.</u> <u>Soc.</u>, <u>90</u>, 1064 (1968).
- E. L. May and N. B. Eddy, <u>J. Org. Chem.</u>, <u>24</u>, 294, 1386 (1959); J. G. Murphy, J. H. Ager, and E. L. May, <u>ibid.</u>, <u>25</u>, 1386 (1960); trade names: Prinadol, Narphen.
- S. Archer, N. F. Albertson, L. S. Harris, A. K. Pierson, and J. G. Bird, <u>J. Med. Chem.</u>, <u>7</u>, 123 (1964); trade name: Talwin.
- 4. P. S. Anderson and R. E. Lyle, <u>Tetrahedron Lett.</u>, 153 (1964).
- 5. Satisfactory analytical and spectroscopic data were obtained for all new compounds.
- T. Y. Jen, G. A. Hughes, and H. Smith, J. <u>Amer. Chem. Soc.</u>, <u>89</u>, 4551 (1967);
 R. Mechoulam and Y. Gaoni, <u>ibid.</u>, <u>87</u>, 3273 (1965) and other references cited in these papers.
- 7. T. Boehm, Arch. Pharm., 272, 406 (1934).
- 8. M. Gordon, J. G. Miller, and A. R. Day, <u>J. Amer. Chem. Soc.</u>, <u>71</u>, 1245 (1949).
- 9. C. F. Koelsch and M. C. Freerks, J. Org. Chem., 18, 1538 (1953).
- H. C. Brown and Nung Min Yoon, J. <u>Amer. Chem. Soc.</u>, <u>88</u>, 1464 (1964); <u>ibid.</u>, <u>90</u>, 2927 (1968).
- 11. Z. B. Papanastassiou and R. J. Bruni, J. Org. Chem., 29, 2870 (1964).
- 12. R. K. Razdan and V. V. Kane, unpublished observations.
- * Author to whom inquiries should be addressed: Sheehan Institute and Sharps
 Associates (SISA), 767 B Concord Avenue, Cambridge, Massachusetts 02138.